

Qualification of a Highly Efficient Flat High Gain Antenna for the Potential Europa Lander

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Nacer Chahat, John Luke Wolff, Heather Lim, and Polly Estabrook

NASA Jet Propulsion Laboratory / California Institute of Technology

December 19, 2019

2nd Indian Conference on Antennas & Propagation (InCAP2019)

December 19-22, 2019 | Ahmedabad, India

Pre-Decisional Information – For Planning and Discussion Purposes Only

EUROPA HAS EMERGED AS ONE OF THE MOST LIKELY LOCATIONS IN THE SOLAR SYSTEM FOR POTENTIAL HABITABILITY

THIS INNOVATIVE ANTENNA
DESIGN IS A SOLUTION FOR
RETURNING SCIENCE FROM
HOSTILE ENVIRONMENTS
AND VAST DISTANCES

Cruise/Jovian Tour

- Jupiter Orbit Insertion: June 203
- Europa Landing: 2033

Carrier Stage

- 1.5 Mrad TID radiation exposure
- No longer an independent spacecraft
- Elliptical disposal orbit

Deorbit, Descent, Landing

- Hazard detection and avoidance
- Sky Crane landing system
- 100-m accuracy
- Adaptive stabilizers
- **DTE tones only**

- Biosignature Science
- 20+ days
- 3 samples from 1 trench
- Direct to Earth Comm or Clipper (contingency)
- 1.5 Gbit data return
- 50 kWh battery
- 2.0 Mrad TID radiation exposure

Nov

Baseline mission 2000cept

ENABLE DIRECT TO EARTH LINK COMMUNICATION BETWEEN THE LANDER AND THE DSN

CHALLENGES

- Drastic stowage volume constraints requiring the antenna to be low profile
- Survivability in the harsh environment (high radiation levels, iESD, cryogenic temperature) requiring the antenna to be mostly made of metal
- High aperture efficiency* requirement (>80%) with RHCP at uplink and downlink frequency range

^{*} Aperture efficiency is defined here as the ratio of the realized gain of the antenna to its standard directivity. The standard directivity is $4\pi A/\lambda_0^2$, where A the area of the antenna aperture and λ_0 is the free space wavelength. This defines how efficiently the area of an antenna is used.

Solder pin to stripline
(bottom side)
Pre tinned ribbon is used for stress relief

1-to-64 Power divider

ANTENNA REFLECTION
COEFFICIENT TESTED FROM -170C
to +110C. THE ANTENNA EASILY
SURVIVED THE THERMAL
CYCLING.

Subarray and Radiation test (TID and iESD):

- Accelerated test (i.e. 90 days in 8hours) was performed in the Dynamitron at JPL at -170C on the 8x8 patch array for TID (3Mrad with RDF = 2) and iESD.
- The iESD environment was defined for the last 90days. The average charging rate for the total 90.5 days is **3.82 pA/cm³** (with RDF = 2).
- No harmful discharges were measured or defects observed.
- S_{11} was measured before after radiation to assess whether there are any damage caused by potential discharges.

	Directivity (dBi)		Gain (dBic)		Axial Ratio (dB)		
F	requency (GHz)	Calc.	Meas.	Calc.	Meas.	Calc.	Meas.
	7.1675	24.9	24.9	24.5	24.1±0.4	0.3	0.3
	8.425	26.0	26.0	25.6	25.3±0.4	2.7	2.2

8×8 PATCH ARRAY HAS
REACHED TRL 4 AND PASSED
ALL CRITICAL TESTS TO
SURVIVE AND OPERATE ON
EUROPA

8 x 8 Patch Element Antenna

TRL 1 TRL 4

THE EUROPA ANTENNA EXEEDS THE PERFORMANCE OF ANY ANTENNA FLOWN BEFORE BY NASA

	Aperture Efficiency (%)	Gain (dBic)	Area (cm²)	HPBW (degree)	Mass (kg)
RLSA	37 / 18	25.3 / 23.5	1256.6 40cm diameter	6.0 / 5.1	1.24
MSL	49 / 44	22.9 / 23.8	551.2	10.0 / 8.4	1.4
MER	25 / 49	20.5 / 24.8	615.8	10.0 / 8.4	1.1
This work	84/ 80	24.1 / 25.3	428.5 20.7cm×20.7cm	10.4 / 8.7	0.5

MSL

SMALLER

MORE EFFICIENT

RELAXES POINTING

HIGHER POWER

16×16 PATCH ARRAY
PERFORMANCE SUCCESFULLY
TESTED FROM -170C to +110C

Front View

32x32 Patch Elements on Front Plate. Linear array 25.4mm spacing, both directions.

Back View

4x4 Guides/PWB. Linear array 206.24mm spacing, both directions.

Back View

Transitions and waveguide connect all sets of Guides/PWB

f = 8.425GHz

RHCP (calc.)

Showing the second of the seco

Predicted gain = 36.0dBic

Predicted gain = 37.5dBic

32 x 32 Patch Element Antenna

DTE COMMUNICATION CAN
NOW BE DONE FROM
LARGE DISTANCES AND IN
HOSTILE ENVIRONMENTS.
MORE MISSIONS WILL USE
DTE ONLY COMMUNICATION
LINKS.

